I _inear Filters

e Example: smoothing by averaging
e form the average of pixels in a neighbourhood
e Example: smoothing with a Gaussian
e form a weighted average of pixels in a neighbourhood

e Example: finding a derivative
e form a weighted average of pixels in a neighbourhood




Smoothing by Averaging

where u, v, i1s a window of N pixels in total centered at 0, O




Smoothing with a Gaussian

e Notice “ringing”
® apparently, a grid is
superimposed

e Smoothing with an average
actually doesn’t compare at
all well with a defocussed
lens

® what does a point of light A Gaussian gives a good
produce? model of a fuzzy blob




Gaussian filter kernel

(27302) xp ( [u;-; v?] )

We’re assuming the index can take negative values




Smoothing with a Gaussian




Finding derivatives




Convolution

Each of these involves a weighted sum of image pixels

The set of weights is the same
e we represent these weights as an image, H
e H is usually called the kernel

Operation is called convolution
® it’s associative
Any linear shift-invariant operation can be represented by
convolution
e linear: G(k )=k G(f)
e shift invariant: G(Shift(f))=Shift(G(f))
e Examples:
e smoothing, differentiation, camera with a reasonable, defocussed lens

system
Nij — E Hqui—u,j—v
uv




Filters are templates

Nz’j — Z Hqui—u,j—v

e At one point

e output of convolution is a (strange) dot-product
e Filtering the image involves a dot product at each point
e [nsight

e filters look like the effects they are intended to find
e filters find effects they look like




Normalised correlation

e Think of filters of a dot product

® now measure the

¢ i.e normalised correlation output is filter output, divided by root sum of

squares of values over which filter lies
Tricks:

e ensure that filter has a zero response to a constant region
® helps reduce response to irrelevant background

subtract image average when computing the normalising constant
® absolute value deals with contrast reversal




normalised correlation
with non-zero mean filter




Positive responses

Zero mean image, -1:1 scale Zero mean image, -max:max scale







Finding hands

Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer
Graphics and Applications, 1998




Gradients and edges

e Points of sharp change in an image are interesting:
® change in reflectance
e change in object
e change in illumination
® noise

e Sometimes called

e General strategy

® determine image gradient

®* now mark points where gradient magnitude is particularly large wrt
neighbours




Differentiation and noise

e Simple derivative filters respond strongly to noise

— obvious reason: noise is associated with strong changes, as above

* Generally, the larger the noise the stronger the response
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e Simplest noise model
¢ independent stationary additive Gaussian noise
e the noise value at each pixel is given by an independent draw from the
same normal probability distribution
® [ssues
e allows values greater than maximum camera output or less than zero
e for small standard deviations, this isn’t too much of a problem

¢ independence may not be justified (e.g. damage to lens)
® may not be stationary (e.g. thermal gradients in the ccd)
















sigma=16




The response of a linear filter to noise

e Do only stationary independent additive Gaussian noise
e get mean and variance of response by pattern matching

e Note that outputs are quite strongly correlated
e useful trick for constructing simple textures




Filter responses are correlated

e (Fairly obviously) over scales similar to the scale of the filter




Smoothing reduces noise

e Generally expect pixels to “be like” their neighbours
® surfaces turn slowly
e relatively few reflectance changes

e Expect noise to be independent from pixel to pixel
¢ Implies that smoothing suppresses noise, for appropriate noise models

e Scale
® the parameter in the symmetric Gaussian
e as this parameter goes up, more pixels are involved in the average
® and the image gets more blurred
¢ and noise is more effectively suppressed
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Edge detection

e Find points where image value changes sharply
e Strategy:

Estimate gradient magnitude using appropriate smoothing
Mark points where gradient magnitude is

e Locally biggest and

* big




Smoothing and Differentiation

e [ssue: noise
e smooth before differentiation
e two convolutions to smooth, then differentiate?
® actually, no - we can use a derivative of Gaussian filter




Scale affects derivatives

3 pixels 7 pixels







Marking the points




Non-maximum suppression
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Predicting the next edge point
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Remaining 1ssues

e Check maximum value of gradient value is sufficiently large
e drop-outs?

e use hysteresis




Notice

* Something nasty is happening at corners
» Scale affects contrast
* Edges aren’t bounding contours
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The Laplacian of Gaussian

e Another way to detect an extremal first derivative is to
look for a zero second derivative

e Appropriate 2D analogy is rotation invariant
e /ero crossings of Laplacian

Bad idea to apply a Laplacian without smoothing

smooth with Gaussian, apply Laplacian

this is the same as filtering with a Laplacian of Gaussian filter
Now mark the zero points where

e there is a sufficiently large derivative,

e and enough contrast



Orientation representations

e Gradient magnitude is affected by illumination changes
® but it’s direction isn’t

e Describe image patches by gradient direction

e Important types:

® constant window
® small gradient mags
e cdge window
e few large gradient mags in one direction
¢ flow window
® many large gradient mags in one direction
e corner window
® Jarge gradient mags that swing




Representing Windows

e Types
® constant
e small eigenvalues

o Edge H= Y (VI)(V])T"

® one medium, one small .
e Flow window

® one large, one small
® corner

® two large eigenvalues
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Scaled representations

e Represent one image with many different resolutions
e Why?
e Search for correspondence
® ook at coarse scales, then refine with finer scales
e Edge tracking
® a“good” edge at a fine scale has parents at a coarser scale
e Control of detail and computational cost in matching
e c¢.g. finding stripes
e terribly important in texture representation




Carelessness causes aliasing

Obtained of images by subsampling




Aliasing

from Watt and Policarpo, The Computer Image




Aliasing - smoothing helps




The Gaussian pyramid

Smooth with gaussians, because
® a gaussian*gaussian=another gaussian
Synthesis

® (making a pyramid from an image)

¢ smooth and sample

Analysis

® (making an image from a pyramid)

e take the top image
Gaussians are low pass filters, so repn 1s redundant
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